Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Cell Death Dis ; 15(3): 179, 2024 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-38429268

RESUMEN

Glioblastoma, IDH-Wild type (GBM, CNS WHO Grade 4) is a highly heterogeneous and aggressive primary malignant brain tumor with high morbidity, high mortality, and poor patient prognosis. The global burden of GBM is increasing notably due to limited treatment options, drug delivery problems, and the lack of characteristic molecular targets. OTU deubiquitinase 4 (OTUD4) is a potential predictive factor for several cancers such as breast cancer, liver cancer, and lung cancer. However, its function in GBM remains unknown. In this study, we found that high expression of OTUD4 is positively associated with poor prognosis in GBM patients. Moreover, we provided in vitro and in vivo evidence that OTUD4 promotes the proliferation and invasion of GBM cells. Mechanism studies showed that, on the one hand, OTUD4 directly interacts with cyclin-dependent kinase 1 (CDK1) and stabilizes CDK1 by removing its K11, K29, and K33-linked polyubiquitination. On the other hand, OTUD4 binds to fibroblast growth factor receptor 1 (FGFR1) and reduces FGFR1's K6 and K27-linked polyubiquitination, thereby indirectly stabilizing CDK1, ultimately influencing the activation of the downstream MAPK signaling pathway. Collectively, our results revealed that OTUD4 promotes GBM progression via OTUD4-CDK1-MAPK axis, and may be a prospective therapeutic target for GBM treatment.


Asunto(s)
Neoplasias Encefálicas , Glioblastoma , Proteasas Ubiquitina-Específicas , Humanos , Neoplasias Encefálicas/patología , Proteína Quinasa CDC2/genética , Proteína Quinasa CDC2/metabolismo , Línea Celular Tumoral , Glioblastoma/patología , Sistema de Señalización de MAP Quinasas , Transducción de Señal , Proteasas Ubiquitina-Específicas/genética , Proteasas Ubiquitina-Específicas/metabolismo , Ubiquitinación
2.
Cell Death Discov ; 8(1): 185, 2022 Apr 09.
Artículo en Inglés | MEDLINE | ID: mdl-35397617

RESUMEN

The E3 ubiquitin ligase HECTD3 is homologous with the E6 related protein carboxyl terminus, which plays a vital role in biological modification, including immunoreactivity, drug resistance and apoptosis. Current research indicates that HECTD3 promotes the malignant proliferation of multiple tumors and increases drug tolerance. Our study primarily explored the important function and effects of HECTD3 in gastric cancer. Here, we discovered that HECTD3 is abnormally activated in gastric cancer, and the clinical prognosis database suggested that HECTD3 was strongly expressed in gastric cancer. Depletion of HECTD3 restrained the proliferative and clone abilities of cells and induced the apoptosis of gastric cancer cells. Mechanistically, our findings revealed that interaction between HECTD3 and c-MYC, and that the DOC domain of HECTD3 interacted with the CP and bHLHZ domains of c-MYC. Furthermore, we discovered that HECTD3 mediates K29-linked polyubiquitination of c-MYC. Then, our research indicated that cysteine mutation at amino acid 823 (ubiquitinase active site) of HECTD3 reduces the polyubiquitination of c-MYC. Our experimental results reveal that HECTD3 facilitates the malignant proliferation of gastric cancer by mediating K29 site-linked polyubiquitination of c-MYC. HECTD3 might become a curative marker.

3.
Biochem Biophys Res Commun ; 599: 148-155, 2022 04 09.
Artículo en Inglés | MEDLINE | ID: mdl-35182941

RESUMEN

Actin-like 6A (ACTL6A) is a core subunit of the SWI/SNF chromatin remodeling complex and is highly expressed in several types of human cancers including glioblastoma. Recent studies verified that ACTL6A regulates the proliferation, differentiation, and migration of cancer cells. In this study, we identified ACTL6A as an important regulator of DNA replication. ACTL6A knockdown could impair the DNA replication initiation in glioblastoma cells. The regulation of DNA replication by ACTL6A was mediated through regulating the expression of the CDC45-MCM-GINS (CMG) complex genes. Further investigation revealed that ACTL6A transcriptionally regulates MCM5 expression. Furthermore, ACTL6A knockdown induced DNA damage and diminished the activity of the ATR-Chk1 pathway, which ultimately led glioblastoma cells to apoptosis and death. Taken together, our findings highlight the critical role of ACTL6A in DNA replication and ATR-Chk1 pathway, and reveal a potential target for therapeutic intervention in glioblastoma.


Asunto(s)
Actinas/genética , Apoptosis/genética , Proteínas Cromosómicas no Histona/genética , Replicación del ADN , Proteínas de Unión al ADN/genética , Glioblastoma/genética , Glioblastoma/patología , Actinas/metabolismo , Proteínas de la Ataxia Telangiectasia Mutada/genética , Proteínas de la Ataxia Telangiectasia Mutada/metabolismo , Proteínas de Ciclo Celular/genética , Línea Celular Tumoral , Quinasa 1 Reguladora del Ciclo Celular (Checkpoint 1)/genética , Quinasa 1 Reguladora del Ciclo Celular (Checkpoint 1)/metabolismo , Proteínas Cromosómicas no Histona/metabolismo , Proteínas de Unión al ADN/metabolismo , Regulación Neoplásica de la Expresión Génica , Humanos , Transducción de Señal/fisiología
4.
J Food Prot ; 84(7): 1136-1140, 2021 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-33465236

RESUMEN

ABSTRACT: Microbial activity is the major cause of the spoilage of aquatic meat products during storage. This study investigated the changes of the microbial compositions of the tiger frog (Rana tigrina) meat stored aerobically at 4°C for 12 days using 16S rRNA amplicon high-throughput sequencing analysis. The microbial diversity and species richness of the frog meat were abundant at the initial phase of storage but decreased substantially with prolongation of the storage time. Proteobacteria was the prevalent phylum identified from the frog meat, with a relative abundance of 40.29% at day 0 increasing to 96.77% at day 6 and 95.41% at day 12. At the genus level, Shewanella, Pseudomonas, and Acinetobacter were the three dominant genera in the spoiled samples and contributed to frog meat spoilage. Their proportions were 41.67, 28.48, and 5.94% at day 6 and 29.94, 23.48, and 18.44% at day 12, respectively. The present study is conducive to understanding the pattern and process of frog meat spoilage during refrigeration and could be used to develop efficient control measures to mitigate the predominant psychrotrophic spoilers in aerobically stored frog meat.


Asunto(s)
Carne , Microbiota , Animales , Microbiología de Alimentos , Almacenamiento de Alimentos , Carne/análisis , ARN Ribosómico 16S/genética , Ranidae , Refrigeración
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...